SAE MINI BAJA FRAME & DRIVETRAIN

Frame:Jacob KelleyDrivetrain:Tye JorgensonRiley KargJacob NajmyLogKaleb Brunmeier

Proudly Sponsored By:

Project Description

General:

- Design and build a single-seat, all-terrain vehicle to compete in the SAE Baja Collegiate Competition
- Entire vehicle built within the limits of the official rulebook
- Performance measured by success in the static and dynamic events at competition in April
- Static Events: Cost Analysis/Product Marketing, Design Analysis, Technical Inspection
- Dynamic Events: Acceleration, Maneuverability, Hill Climb, S&T Evaluation, Endurance Race

Frame:

- Cage designed and fabricated to withstand impacts during normal operation, collision, or roll over
- Interfaces with all other sub-teams
- All welding done in-house

Drivetrain:

- Responsible for transmitting engine power to vehicle propulsion
- Up to 150 bonus points for operational 4WD/AWD system

Figure 1: 2018-19 NAU Baja

Prototype and CAD Package

Figure 2: Frame Isometric View

Figure 4: Gearbox Isometric View

Figure 6: ECVT Isometric View

Figure 3: Frame Side View

Figure 5: Gearbox Open View

Overall Design CAD

Figure 7: Assembly Isometric View

Drivetrain

- Engine > ECVT > Gearbox > Differential (Not Pictured)
 Frame
- Support Driver, Front/Rear End Suspension, Drivetrain

Design Description: Drivetrain and Frame

ECVT

- Allows the vehicle to change gear ratios from a 4:1 to 1:1
 manually and automatically
- Gear ratio controlled by stepper motor connected to a threaded rod
- User selectable modes for different events and automatic mode for ease of use

Gear Reducer

- Allows for a 2:1 gear reduction after the ECVT going to the front and rear differentials
- Allows for more torque to be transmitted with a lower power loss

Differentials

- Directs the power perpendicular to the driveshaft
- Final gear reduction of 3.67:1 giving the vehicle a final reduction of 7.34:1 to 29.36:1
- Allows for electronic control between 4wd and 2wd

Frame

- Supports all subcomponents of the buggy
- · Protects driver in case of rollover or collision with another teams

Figure 10: ECVT

Figure 11: Transfer Case

Figure 12: Differential [1]

Current State: Drivetrain and Frame

ECVT

- Electrical Components have been ordered
- Hardware BOM is being finalized
- Currently validating material
- Machining will start before December

Gear Reducer

- 2:1 Gear Reducer final design concept
- · Gear validation finalized
- Initial BOM built
- In progress of gear case validation

Differentials

- Front and Rear Differentials Selected
- 3.67:1 differential ratio selected
- Differentials just ordered (11/5)

Frame

- · Finalized main structure
- · Front and rear end adjustments will be necessary
- · Initial vendor search for manufacturing

Figure 13: ECVT

Figure 14: Transfer Case

Design Requirements (CRs)

Customer Requirements

- Reliability
- Durability
- Low Weight
- Withstand Impact
- Ergonomic Cockpit
- High Torque Output
- High Power Output
- Operational Safety
- Low Center of Mass

Design Elements from CRs

- Factors of Safety; Strong Materials; FMEA
- Minimal Factor of Safety (1.3-1.5) [2]
- Inclined Firewall; Low SIMs; Design Geometry
- ECVT; Differential; Transfer Case

Figure 15: 2019 California Competition Hill Climb

(Reliability; Durability; Withstand Impact; Operational Safety)
(Low Weight)
(Ergonomic Cockpit; Low Center of Mass)
(High Torque Output; High Power Output)

Design Requirements (Visual Representation)

Figure 16: Section View of Frame

Figure 17: Spatial Location of Drive Train Components

Design Requirements (Analytical Analyses)

Table 1: Drive Shaft Torsion Analysis

Torque applied (lb*in)	2016
Major diameter (in)	1
Minor diameter (in)	0.93
Major radius (in)	0.5
Polar moment of inertia (in^4)	0.024735
Stress Experienced (lb/in^2)	40752.08
Yeild Stress (lb/in^2)	63100

Table 2: Frame Material Analysis

	Minimum Tubing	Primary Tu	bing				
material	1018 steel	4130 steel					
OD (in)	1	1.25					
Wall thickness (in)	0.12	0.065					
carbon content (%)	0.18	0.3					
E (kpsi)	29700	29700					
I (in ⁴)	0.032710765	0.042602298					
k _b (klb * in ²)	971.5097313	1265.288253	293.7785				
S _y (kpsi)	52.9388	63.1					
c (in)	0.5	0.625					
S _b (klb*in)	3.463337331	4.301128015	0.837791				
density (lb/in ³)	0.284	0.284					
weight per foot (lb)	1.130511444	0.824671841 -0.3059					

Table 3: Gear Analysis

Bending factor o	of safety SF	3.49	4.0	0
	(SH)^2	1.91	1.9	7
Wear factor of s	afety SH	1.38	1.4	0
	Circular pitch	p	0.393	in
	tooth thickness	t	0.196	in
	Length Check:			
	Total Length	L	9	in
	c-c	с	4.5	in
	nterference check:	We Good		
	Pinion Teeth	24		
	Equation Check	16.94181163		

Design Validation

Failure Mode and Effects Analysis

Frame

- Highest Risk Priority Number (RPN) is weld joint failure due to high stress concentration
- We decided to use an experienced welder that has done previous Baja welding

Drivetrain

- Highest RPN is ECVT failure due to electrical component failure
- We decided to use an Arduino for community support, modularity, and simplicity

Function	Potential Failure Mode	Potential Effect(s) of failure	Severit y	Potential Cause(s)	Occurrenc e	Current design controls (prevention)	Current design controls (detection)	Detection	RPN
	Weld Joint Fails	Members will become detached and frame will warp under normal loading. If any severe impact		Quality control in the fabrication process, using a highly skilled welder	Visual inspection, test sample weld	2	36		
Frame		occurs, the frame will be severely damaged and endanger the driver or lead to accident.		High Stress Concentration	6	Design to distribute loads evenly, strong materials and welds	Visual inspection	4	216
Contain and protect driver while holding together all other	Member Bends	Member becomes deformed leading to improper frame geometry. This could cause improper functioning of other components.	7 High Impact on Member 8 Build with stror materials and prope distribution			Build with strong materials and proper force distribution	Visual inspection	3	168
together	Member Snaps	Member will become separate and frame will severely warp under normal loading. If any severe impact occurs, the frame will be severely damaged and endanger the driver or lead to accident.		High Tensile Stress on Member	1	Use strong materials and design proper load distribution	Visual inspection	6	60
	ECVT fails	The Baja would not accelerate properly, it could lock up causing	7	Electrical Components Fail	4	Use quality electrical components and connections	System Testing	4	112
Duise Tasia		sudden braking and inoperability		Mechanical Parts Jam	3	Use of quality bearings and parts	System Testing and Visual Inspection	3	63
Provide propulsion for	Gear Reducer	The Baja would not accelerate or could cause sudden braking and	8	Gears Jam	4	Design and build quality casings and use of proper lubrication	System Testing	3	96
corresponding	Falls	accident		Gears Break	2	Building with quality materials	System Testing	1	16
	Differentials Fail	The Baja would not accelerate or could cause sudden braking and	8	Gears Jam	4	Design and build quality casings and use of proper lubrication	System Testing	3	96
	1 011	accident		Gears Break	2	Building with quality materials	System Testing	1	16

Table 4: FMEA

Design Validation (Frame)

Torsional rigidity

- Widely used in the automotive industry
- Used FEA in SolidWorks to simulate a torsional rigidity test
- Deflection is less important in off road applications, but the stresses generated are very applicable

Design correction

- We were considering less side impact bracing to save weight
- This test demonstrated that we should keep the extra bracing

Physical Testing

- When we have the frame fabricated, we can physically test this to validate our FEA
- This can be done in the machine shop with some scrap metal Procedure:
- Affix the rear end to a table or bench
- Slide a rod through the top nose member
- Support one end while hanging a weight off the other end

Figure 19: Physical Torsional Rigidity Test [3]

Design Validation (Drive Train)

Design correction

- Replace timing belt design
- Rationale: Volumetric Requirement, Similar Weight

Gear Reducer Calculations

- Utilized Excel sheet from Shigley's Machine Design
- Must satisfy required transmitted load

Physical Testing

- Once the gear reducer is assembled, test torque output
- Engine dynamometer

Procedure:

• With the engine and ECVT on the dynamometer, run a test to determine efficiency loss in transmitted torque

Table 5: Gear Calculations

n 24 10 200 3800 rough- ned G1	Gear 48 10 200 3800 Through-	teeth TPI Ibf ft/min
24 10 200 3800 rough- ned G1	48 10 200 3800 Through-	teeth TPI Ibf ft/min
10 200 3800 rough- ned G1	10 200 3800 Through-	TPI lbf ft/min
200 3800 rough- ned G1	200 3800 Through-	lbf ft/min
3800 rough- ned G1	3800 Through-	ft/min
rough- 1ed G1	Through-	
ned G1	0	
	hardened G1	
250	250	HB
0	0	ksi
0	0	ksi
7	7	
niform	Uniform-uniform	
1.25	1.25	in
TRUE	TRUE	
FALSE	FALSE	
nercial	Commercial	
250 HB	250 HB	
)0E+09	5.00E+08	
95	95	
3.49	4.00	
1.91	1.97	
1.38	1.40	
	0 0 7 niform 1.25 TRUE FALSE PALSE POE+09 95 3.49 1.91 1.38	230 230 0 0 7 7 niform Uniform-uniform 1.25 1.25 TRUE TRUE FALSE FALSE nercial Commercial 250 HB 250 HB 00E+09 5.00E+08 95 95 3.49 4.00 1.91 1.97 1.38 1.40

Budget

• Total FR-DT Budget

- Low End: \$4378.87
- High End: \$6003.17
- Team Budget: \$6865.00
- Current Team Costs: \$9228.96
- Deficit: **\$2363.96**
- Deficit Solutions
- Fundraising: GoFundMe, Car Shows, Food Nights
- Sponsorship: Polaris, Fox, Ping

Team	Co	st
	Low	High
DR-FR	\$ 4,378.87	\$6,003.17
FE-RE	\$ 2,222.49	\$3,225.79
Total	\$ 6,601.36	\$9,228.96

Total:	\$ 9,228.96
Current Budget	\$ 6,865.00

Deficit: \$(2,363.96)

Table 6: Budget

Initial Bill of Materials: Drivetrain and Frame										
ltem No.	Description	Qty.	Vendor	Cost	Range					
1	B&S 10 HP Vanguard Engine	1	Briggs & Stratton	\$546.30	\$546.30					
2	Fuel Tank	1	Pyrotect	\$225.00	\$225.00					
3	Fuel Line	1	Napa Auto	\$0.00	\$0.00					
4	Kill Switches	2	Parker SportsCenter	\$51.00	\$51.00					
5	Primary ECVT Pulley	1	In-house	\$0.00	\$400.00					
6	Linear Bearing for Splined Shaft	1	McMaster-Carr	\$278.89	\$278.89					
7	Gaged Secondary CVT Pulley	1	Gaged Engineering	\$0.00	\$0.00					
8	Nema 23 2.8A Stepper Motor	1	StepperOnline	\$26.00	\$26.00					
9	US5881 Hall Effect Sensor	2	SainSmart	\$7.98	\$7.98					
10	Arduino Components	TBD	Arduino	\$0.00	\$40.00					
11	Spur Gears	2	TBD	\$100.00	\$400.00					
	Gear Manufacturing	2	Ping	\$0.00	\$0.00					
12	Case Material	1	SpeedyMetals	\$0.00	\$500.00					
13	Case Manufacturing	2	Ping	\$0.00	\$0.00					
14	5/8 Hollow Steel Tube	1	SpeedyMetals	\$27.36	\$27.36					
15	Closed Cell High Density Foam	1	USAFoam	\$22.36	\$22.36					
16	Safety Covers	2	SpeedyMetals	\$54.32	\$54.32					
17	Misc. Hardware	TBD	Copper State	\$20.00	\$150.00					
18	ECVT Electronic Components	N/A	N/A	\$513.66	\$567.96					
	Yamaha Rhino 660 Rear Diff.	1	maXpeedingrods	\$240.00	\$240.00					
	Yamaha Rhino 660 Front Diff.	1	maXpeedingrods	\$266.00	\$266.00					
	Frame Material/Fabrication	N/A	VR# Engineering	\$2,000.00	\$2,000.00					
19	Contingency Fund	N/A	Any	\$0.00	\$200.00					
			Total:	\$4,378.87	\$6,003.17					

Timeline

- Timeline lengthened due to subsystem designs
- 1 Month Timeline
 Frame moving to manufacture
 Drivetrain is finalizing FEA
 simulation of sub-team components
- 4 Month Timeline
 Manufacturing completed by March
 15th

		Scrolling	Increment:	159		Februa	ry																			М	arch					
						1 2 <	34	56	7 8	9 10 1	1 12	13 14	15 1	6 17	18 19	20	21 22	23	24 25	26	27 28	29	1 2	3 4	45	6 7	89	10	11 12	13 1	14 15	16
Milestone Description	Category	Assigned To	Progress	Start	No. Days	s s	м	w т	FS	s M T	r w	T F	s s	м	т w	т	FS	s	м т	w	T F	s	sм	T V	v т	FS	s M	т	w T	F	s s	м
lanufacture																																
Cockpit Finalized	Low Risk			2/29/2020	1																											
Powder Coat	Low Risk			3/31/2020	1																											
Drivetrain	High Risk			2/29/2020	1																											
Speed Reducer	Med Risk			2/29/2020	1																											
eCVT	High Risk			1/31/2020	1																											
CV's Mounted	Low Risk			3/15/2020	1																											
RE Suspension	High Risk			3/15/2020	1																											
Trailing Arms	Med Risk			1/31/2020	1																											
Lateral Links	Med Risk			2/29/2020	1																											
Shocks	Med Risk			2/15/2020	1																											
Hubs	Med Risk			2/21/2020	1																											
Frame Mounts	Med Risk			3/7/2020	1																											
FE Suspension	High Risk			3/15/2020	1																											\square
A-Arms	Med Risk			1/31/2020	1																											
Shocks	Med Risk			2/15/2020	1																											
Hubs	Med Risk			2/21/2020	1																											
Heims, Rod Ends, Ball Joints	Low Risk			2/29/2020	1																											
Steering	Med Risk			3/7/2020	1																											
Brake System	Med Risk			3/7/2020	1																											

Figure 20: Timeline

Questions?

References

[1] Amazon.com. (2019). Rear Differential for Yamaha Rhino 700 2008-2013 660 2004-2007 450 2006-2007. [online] Available at: https://www.amazon.com/Differential-Yamaha-2008-2013-2004-2007-2006-2007/dp/B07K447FRL/ref=sr_1_6?keywords=yamaha+rhino+differential&qid=1572993653&sr=8-6 [Accessed 5 Nov. 2019].

[2] "Factors of Safety," *Engineering ToolBox*. [Online]. Available: https://www.engineeringtoolbox.com/factors-safety-fos-d_1624.html. [Accessed: 05-Nov-2019].

[3] - Finite Element Analysis. (2014). GUEST BLOG: RESULTS VALIDATION AT CURTIN MOTORSPORT. [online] Available at: https://www.finiteelementanalysis.com.au/featured/guest-blog-curtin-motorsport/ [Accessed 5 Nov. 2019].

Appendix A (Drive Shaft Calculations)

2016	
1	
0.93	
0.5	
0.024735	
40752.08	
63100	
0.035	
14	168
12	
2016	
1.548387	
0.030028	
0.283	
0.106107	
	2016 1 0.93 0.5 0.024735 40752.08 63100 0.035 14 12 2016 1 1.548387 0.030028 0.283 0.106107

Appendix B (Material Calculations)

	Minimum Tubing	Primary T	ubing	Secondary Tubing
material	1018 steel	4130 steel		4130 steel
OD (in)	1	1.25		1
Wall thickness (in)	0.12	0.065		0.035
carbon content (%)	0.18	0.3		0.3
E (kpsi)	29700	29700		29700
I (in ⁴)	0.032710765	0.042602298		0.012367468
k _b (klb * in ²)	971.5097313	1265.288253	293.7785	367.3138007
S _y (kpsi)	52.9388	63.1		63.1
c (in)	0.5	0.625		0.5
S _b (klb*in)	3.463337331	4.301128015	0.837791	1.560774466
density (lb/in ³)	0.284	0.284		0.284
weight per foot (lb)	1.130511444	0.824671841	-0.30594	0.361613651

Appendix C (Gear Calculations: AGMA)

	-				_		-				
		Pinion	Gear					Pinion	Gear		
Number of Teeth	N	24	48	teeth		Bending factor of safety	SF	4.32	4.95	E	Eq. 14-41
Diametral Pitch	Р	8	8	TPI			(SH)^2	2.37	2.43	F	Eq. 14-43
Transmitted Load	Wt	200	200	lbf	Eq. 13-35	Wear factor of safety	SH	1.54	1.56	F	Eq. 14-42
Pitch-line velocity	v	3800	3800	ft/min	Eq. 13-34						
Material		Through-hardened G1	Through-hardened G1		Fig. 14-2						
Brinell hardness	HB	250	250	НВ	12223			Circular pitch	р	0.393 i	n
User-specified bending stress	St	0 [°]	0	ksi				tooth thickness	t	0.196 i	n
User-specified contact stress	Sc	0	0	ksi							
Quality number	Qv	7	7					Length Check:			
Overload Power/driven		Uniform-uniform	Uniform-uniform		Fig. 14-17			Total Length	L	9 i	n
Face width	F	1.25	1.25	in	1.200			c-c	C	4.5 i	n
Centered?		TRUE	TRUE		Eq. 14-33			interference check:	We Good		
Adjusted?		FALSE	FALSE		Eq. 14-35			Pinion Teeth	24		
Condition		Commercial	Commercial		Table 14.9			Equation Check	16.94181163		
Fatigue model		250 HB	250 HB		Fig. 14-14						
Load cycles		1.00E+09	5.00E+08								
Reliability		95	95								
Diameter	d	3	6	in	Eq. 13-1						
Addendum	а	0.125	0.125 in								
Deddendum	b	0.15625	0.15625	in							
Bending stress slope		77.3	77.3	psi/HB							
Bending stress intercept		12800	12800	psi							
Contact stress slope		322	322	psi/HB							
Contact stress intercept		29100	29100	psi							
Bending stress	St	32.125	32.125	ksi	Figure 14-2						
Contact stress	Sc	109.6	109.6	ksi	Figure 14-5						
Geometry factor	J	0.354	0.399		Figure 14-6						
Speed ratio	mG	2.0000	2.0000		Eq. 14-22						